Where to Make the Most: A Comparison of Data Scientist Salaries Across U.S. States / 미국 각 주별 물가 및 데이터사이언티스트 연봉 비교
I would conduct an analysis of data scientist salaries, comparing wages across different US states. Having explored biotechnologist salaries, we now turn our attention to comparing data scientist salaries.
생명공학자 연봉 비교에 이어 데이터사이언티스트 연봉 비교로 돌아왔다.
- previous post (생명공학자 연봉비교) : https://jaermione.tistory.com/10
Where to Make the Most: A Comparison of Biotechnologist Salaries Across U.S. States / 미국 각 주별 물가 및 생명공학
Today, I will analyze the data from the U.S. Bureau of Labor Statistics to identify the most livable U.S. cities for biotechnologists.. 오늘은 생명공학자로서 미국에서 가장 살기 좋은 도시를 찾기 위해, 미국 노동통계청에서
jaermione.tistory.com
ref : https://www.bls.gov/ooh/
Home : Occupational Outlook Handbook: : U.S. Bureau of Labor Statistics
Occupational Outlook Handbook > Home The CareerInfo app is available for iOS and Android devices. To learn more about the app, click here. For a video guide to using the OOH, click here. OCCUPATION GROUPS Architecture and Enginee
www.bls.gov
I downloaded the raw data for NAICS 541513 from the website linked above.
해당 사이트에서 NAICS 541513 raw data를 받아왔다.
- NAICS : The North American Industry Classification System
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data=pd.read_csv("") # your path
area=pd.read_csv("") # your path
cost=pd.read_csv("") # your path
STATE=pd.read_csv("") # your path
data=data[data['total_qtrly_wages']>0]
area_info=data.join(area.set_index('area_fips')['state'],on='area_fips') #like Vlookup!
sample=area_info[['state','total_qtrly_wages','taxable_qtrly_wages']]
sample= sample.dropna()
State=list(set(sample['state']))
sample['final_wages']=sample['total_qtrly_wages']-sample['taxable_qtrly_wages']
Final=[]
for st in State:
A=sample[sample['state']==st]
B=int(sum(A['final_wages'])/len(A))
Final.append((st,B))
FI=pd.DataFrame(Final,columns=['state','wages'])
wgs=FI.sort_values(by='wages',ascending=False)
wgs.to_csv("") # your path
##Excel Vlookup##
result=pd.read_csv("") # your path
top=result.head(10)
f,ax=plt.subplots(1, 1, figsize=(20,5))
sns.barplot(x=top['wages/index'],y=top['state'],data=top,palette='Set3')
plt.show()
The codes are similar to the previous codes, which reflect the cost of living in different areas.
코드는 이전 코드와 비슷하다.(생활비 지수 반영함)
ref:https://meric.mo.gov/data/cost-living-data-series
Cost of Living Data Series | Missouri Economic Research and Information Center
Missouri had the sixth lowest cost of living in the United States for the 2023. In general, the most expensive areas to live were Hawaii, Alaska, the Northeast, and the West Coast. The least expensive areas were the Midwest and Southern states. MERIC deri
meric.mo.gov
Results
As a result, it indicates that Michigan is the most livable state in the US, and the second one is California, where I will go to this fall semester as an exchange student. I can't wait to go there and make the most of the experience!
분석결과, 미시간이 최고로 살기 좋은 도시로 나타났고, 두 번째가 내가 교환학생을 가는 캘리포니아로 나왔다. 가서 많이 배우고 느끼고 와야지!