본문 바로가기
Study

Summary of Linear Algebra

by 재르미온느 2024. 6. 9.

3.2 Norm, Dot Product, and Distance in Rn

  • norm : length of vector ||v||
    • Standard Unit vector : vector of 1 length 1/||v||*v
    • distance between u and v : ||u-v||
  • Dot Product : Inner Product! > u • v = ||u|| ||v|| cosß (0 ≤ ß ≤ π)
    • u • v > 0 : acute (less than 90˚)
    • u • v < 0 : obtuse
    • u • v = 0 : 90˚

    • u • v  = u1v1 + u2v2
    • Euclidean inner product
      • u • v  = uvT = vuT
    • cosß = u • v / ||u|| ||v||

 

3.3 Orthogonality

  • orthogonal Projection 영사!
  • Decompose : w1 + w2 = w1 + (u-w1) = u
  • vector component of u along a
    • proja u = u•a / ||a||^ *a
  • vector component of u orthogonal to a
    • u - projau = u - u • a / ||a||^ *a 
  • norm of projection : ||proja u|| = |u•a| / ||a||

 

 

Chapter 4 : General Vector Spaces

Section 4.1 : Real Vector Spaces

  • Vector Space V
    • u , v in V > u + v in V (inherit)
      • u + v = v + u
      • (u+v) + w = u + (v+w)
      • u+0 = 0 +u =u
      • u + (-u) = 0
    • k : any scalar , u in V > ku in V (inherit)
      • k(u+v) = ku + kv
      • (k+m)u = ku + mu
      • k(mu) = (km)u
      • 1u = u

 

Section 4.2 : Subspaces

  • Subset W is itself a vector space under V
  • Subspace Test : Axiom 1 and 6
  • closed : 닫혀있는~
  • Solution Spaces of Homogeneous Sytem

 

Section 4.3 : Spanning Sets

  • the standard unit vectors Span Rn
  • Testing of Spanning
    • det(A) ≠ 0 (if det(A) =0, do not span)
    • Ax=0 : trivial sol 0
    • Ax=b : consistent

 

Section 4.4 : Linear Independence

  • Linear Independence : the vector cannot be explained with the other vector.
    • non trivial sol (det(A) =0) > linear dependence
  • Linear Independence of the Standard Unit Vectors in Rn
    • k1i + k2j + k3k =0 >> (k1,k2,k3) = (0,0,0)
    • if i and j are dependent, k1 can be express as k1=-k2 > NOT INDEPENDENT
  • a basis to R3?
    1. linear independence? > k1i + k2j + k3k =0 : only trivial solution
    2. span? det(A) ≠ 0

 

Section 4.5 : Coordinates and Basis

  • S is a basis for V
    : 1. S span V
    2. S is linearly independent
  • Uniqueness of Basis Representation
    • v = c1v1 + c2v2 + ••• + cnvn
    • the group of (c1, c2 ••• cn) is unique!
    • coordinates of v : the group of (c1, c2 ••• cn)

 

Section 4.6 : Dimension

  • All bases for vector space have the same number of vectors.
  • V : finite-dimensional vector space,
    • V > n vectors : Linearly dependent
    • V < n vectors : not span V
  • dimension : number of vectors in a basis of V
  • Plus / Minus Theorem
    • S U {v} : still linearly independent
    • span(S) = span(S -{v}), if S -{v} remove v from s > still span!

 

Section 4.8 : Row Space, Column Space, and Null Space

  • Row space of A : Rn
  • Column space of A : Rm
  • Null space of  A : null(A)

  • Ax=b is consistent!
  • The elementary row operation can change the column space of a matrix
  • Elementary row operations don't change dependency relationships between column vectors.
  • the number of basis
    • the number of row space basis = the number of  column space basis

 

Section 4.9 : Rank, Nullity, and Fundamental Matrix Spaces

The row space and the column space of a matrix A have the same dimension.

  • common dimension(number of vectors) : rank => rank(A)
  • demension of null space : nullity => nullity(A)
  • mXn matrix
    • rank(A) ≤ min(m,n) for an mXn matrix A
    • rank(A) + nullity(A) =n = dim(V)
      • [number of leading variables] + [number of free variables] = n

  • Equivalent Statements of a n x n matrix.

 

 

Chapter 5 : Eigenvalues and Eigenvectors

Section 5.1 : Eigenvalues and Eigenvectors

  • eigenvalue
  • eigenvector
  • (λI - A)x =0
  • det(λI - A)=0
  • features of eigen value
    • λ = trace(A)
    • πλ = |A|

 

Section 5.2 : Diagonalization

  • B is similar to A
    • B=P-1AP
  • Fact
    1. det(P-1AP) = det(P-1)det(A)det(P) =det(A) = πλ
    2. Invertibility : A is invertible, P-1AP is invertible

    3. rank(A) = rank(P-1AP)

    4. nullity(A) = nullity(P-1AP)

    5. trace(A) = trace(P-1AP) = ∑λ
    6. Eigenvalues : A and P-1AP have same eigenvalues.
    7. Eigenspace dimension : dim(A) = dim(P-1AP)

  • Diagonal matrix D, Square matrix A : A > diagonalization
    => D=P-1AP <=> AP = PD
    • An nXn matrix with n distinct eigenvalues is diagonalizable.
      λ1≠λ2≠λ3≠•••λn
    • P = {p1, p2, •••, pn}

 

Chapter7 : Diagonalizaion and Quadratic Forms

Section 7.1 : Orthogonal Matrices

  • orthogonal : its transpose is th same as its inverse!
    A-1 = At
    • AAt = AtA = I
  • A is orthogonal
    • the row vector of A > inner product =0
    • the column vector of A > inner product =0
    • transpose A > orthogonal
    • inverse of A > orthogonal
    • product of orthogonal matrices is orthogonal
    • det(A) =1

 

Section 7.2 : Orthogonal Diagonalization

  • orthogonally similar : B = PtAP
  • A : n x n matrix => D = PtAP
    • orthogonally diagonalizable
    • orthonormal set of n eigenvectors
    • A : symmetric
  • Spectral Decomposition
    • A = ∑λiuiuti